RaytracingInOneWeekend/src/vector3.h

148 lines
3.6 KiB
C++

#pragma once
#include <cmath>
#include <iostream>
using std::sqrt;
class vec3{
public:
vec3() :e{0,0,0}{}
vec3(double e0, double e1, double e2): e{e0, e1, e2}{}
double x() const {return e[0];}
double y() const {return e[1];}
double z() const {return e[2];}
vec3 operator-() const {return vec3(-e[0], -e[1], -e[2]);}
double operator[](int i)const {return e[i];}
double& operator[](int i){return e[i];}
vec3& operator+=(const vec3& v){
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(const double t){
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator/= (const double t){
return *this *= 1/t;
}
double length() const {
return sqrt(length_squared());
}
double length_squared() const {
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
inline static vec3 random(){
return vec3(random_double(), random_double(), random_double());
}
inline static vec3 random (double min, double max){
return vec3(random_double(min,max),random_double(min,max),random_double(min,max));
}
bool near_zero() const {
const auto s = 1e-8;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
double e[3];
};
// Type aliases for vec3
using point3 = vec3; // 3D point
using color = vec3; // RGB color
// Utitility Functions
inline std::ostream& operator<< (std::ostream& out, const vec3& v){
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator+(const vec3& u, const vec3& v){
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator- (const vec3& u, const vec3& v){
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator* (const vec3& u, const vec3& v){
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator* (double t, const vec3& v){
return vec3(t*v.e[0], t*v.e[1], t*v.e[2]);
}
inline vec3 operator*(const vec3& v, double t){
return t *v;
}
inline vec3 operator/(vec3 v, double t){
return (1/t) * v;
}
inline double dot(const vec3& u, const vec3& v){
return u.e[0] * v.e[0]
+ u.e[1] * v.e[1]
+ u.e[2] * v.e[2];
}
inline vec3 cross(const vec3& u, const vec3& v){
return vec3( u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 unit_vector(vec3 v){
return v / v.length();
}
vec3 random_in_unit_sphere(){
while(true){
auto p = vec3::random(-1,1);
if(p.length_squared() >= 1) continue;
return p;
}
}
vec3 random_unit_vector(){
return unit_vector(random_in_unit_sphere());
}
vec3 random_in_hemisphere (const vec3& normal){
vec3 in_unit_sphere = random_in_unit_sphere();
if(dot(in_unit_sphere, normal) > 0.0) // In the same hemisphere as the normal
return in_unit_sphere;
else
return -in_unit_sphere;
}
vec3 reflect (const vec3& v, const vec3& n){
return v -2 *dot(v,n) *n;
}
vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat){
auto cos_theta = fmin(dot(-uv,n), 1.0);
vec3 r_out_perp = etai_over_etat * (uv + cos_theta*n);
vec3 r_out_parallel = -sqrt(fabs(1.0 - r_out_perp.length_squared())) * n;
return r_out_perp + r_out_parallel;
}
vec3 random_in_unit_disk(){
while(true){
auto p = vec3(random_double(-1,1) , random_double(-1,1), 0);
if(p.length_squared() >= 1) continue;
return p;
}
}