#pragma once #include #include using std::sqrt; class vec3{ public: vec3() :e{0,0,0}{} vec3(double e0, double e1, double e2): e{e0, e1, e2}{} double x() const {return e[0];} double y() const {return e[1];} double z() const {return e[2];} vec3 operator-() const {return vec3(-e[0], -e[1], -e[2]);} double operator[](int i)const {return e[i];} double& operator[](int i){return e[i];} vec3& operator+=(const vec3& v){ e[0] += v.e[0]; e[1] += v.e[1]; e[2] += v.e[2]; return *this; } vec3& operator*=(const double t){ e[0] *= t; e[1] *= t; e[2] *= t; return *this; } vec3& operator/= (const double t){ return *this *= 1/t; } double length() const { return sqrt(length_squared()); } double length_squared() const { return e[0]*e[0] + e[1]*e[1] + e[2]*e[2]; } inline static vec3 random(){ return vec3(random_double(), random_double(), random_double()); } inline static vec3 random (double min, double max){ return vec3(random_double(min,max),random_double(min,max),random_double(min,max)); } bool near_zero() const { const auto s = 1e-8; return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s); } double e[3]; }; // Type aliases for vec3 using point3 = vec3; // 3D point using color = vec3; // RGB color // Utitility Functions inline std::ostream& operator<< (std::ostream& out, const vec3& v){ return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2]; } inline vec3 operator+(const vec3& u, const vec3& v){ return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]); } inline vec3 operator- (const vec3& u, const vec3& v){ return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]); } inline vec3 operator* (const vec3& u, const vec3& v){ return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]); } inline vec3 operator* (double t, const vec3& v){ return vec3(t*v.e[0], t*v.e[1], t*v.e[2]); } inline vec3 operator*(const vec3& v, double t){ return t *v; } inline vec3 operator/(vec3 v, double t){ return (1/t) * v; } inline double dot(const vec3& u, const vec3& v){ return u.e[0] * v.e[0] + u.e[1] * v.e[1] + u.e[2] * v.e[2]; } inline vec3 cross(const vec3& u, const vec3& v){ return vec3( u.e[1] * v.e[2] - u.e[2] * v.e[1], u.e[2] * v.e[0] - u.e[0] * v.e[2], u.e[0] * v.e[1] - u.e[1] * v.e[0]); } inline vec3 unit_vector(vec3 v){ return v / v.length(); } vec3 random_in_unit_sphere(){ while(true){ auto p = vec3::random(-1,1); if(p.length_squared() >= 1) continue; return p; } } vec3 random_unit_vector(){ return unit_vector(random_in_unit_sphere()); } vec3 random_in_hemisphere (const vec3& normal){ vec3 in_unit_sphere = random_in_unit_sphere(); if(dot(in_unit_sphere, normal) > 0.0) // In the same hemisphere as the normal return in_unit_sphere; else return -in_unit_sphere; } vec3 reflect (const vec3& v, const vec3& n){ return v -2 *dot(v,n) *n; } vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat){ auto cos_theta = fmin(dot(-uv,n), 1.0); vec3 r_out_perp = etai_over_etat * (uv + cos_theta*n); vec3 r_out_parallel = -sqrt(fabs(1.0 - r_out_perp.length_squared())) * n; return r_out_perp + r_out_parallel; } vec3 random_in_unit_disk(){ while(true){ auto p = vec3(random_double(-1,1) , random_double(-1,1), 0); if(p.length_squared() >= 1) continue; return p; } }