QuickStart Model Tutorial Finished
Finished up first neural network tutorial with pytorch
This commit is contained in:
commit
872947e867
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
*.pth filter=lfs diff=lfs merge=lfs -text
|
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
data
|
||||||
|
venv
|
||||||
|
.vscode
|
||||||
|
|
BIN
FashionLabeling_model.pth
(Stored with Git LFS)
Normal file
BIN
FashionLabeling_model.pth
(Stored with Git LFS)
Normal file
Binary file not shown.
15
README.md
Normal file
15
README.md
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
# Pytorch Tutorials
|
||||||
|
## Learning about pytorch
|
||||||
|
|
||||||
|
![Pytorch logo](https://cdn.icon-icons.com/icons2/2699/PNG/512/pytorch_logo_icon_169823.png)
|
||||||
|
|
||||||
|
![Neural network image](https://tikz.net/wp-content/uploads/2021/12/neural_networks-001.png)
|
||||||
|
|
||||||
|
|
||||||
|
### Resources
|
||||||
|
|
||||||
|
[https://pytorch.org/docs/stable/index.html](https://pytorch.org/docs/stable/index.html)
|
||||||
|
|
||||||
|
- **Following tutorials from:**
|
||||||
|
[pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html](https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html)
|
||||||
|
|
84
quickStart/FashionLabeler.py
Normal file
84
quickStart/FashionLabeler.py
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
import torch
|
||||||
|
import random
|
||||||
|
from torch import nn
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torchvision import datasets
|
||||||
|
from torchvision.transforms import ToTensor
|
||||||
|
|
||||||
|
# Download training data from open datasets
|
||||||
|
training_data = datasets.FashionMNIST(
|
||||||
|
root="data",
|
||||||
|
train=True,
|
||||||
|
download=True,
|
||||||
|
transform=ToTensor(),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Download test data from open datasets
|
||||||
|
test_data = datasets.FashionMNIST(
|
||||||
|
root="data",
|
||||||
|
train=False,
|
||||||
|
download=True,
|
||||||
|
transform=ToTensor(),
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_size = 64
|
||||||
|
|
||||||
|
# Create data loaders.
|
||||||
|
train_dataloader = DataLoader(training_data, batch_size=batch_size)
|
||||||
|
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
||||||
|
|
||||||
|
for X, y in test_dataloader:
|
||||||
|
print(f"Shape of X [N, C, H, W]: {X.shape}")
|
||||||
|
print(f"Shape of y: {y.shape} {y.dtype}")
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
# Get cpu or gpu device for training
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||||
|
|
||||||
|
print(f"Using {device} device")
|
||||||
|
|
||||||
|
# Define model
|
||||||
|
class NeuralNetwork(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.flatten = nn.Flatten()
|
||||||
|
self.linear_relu_stack = nn.Sequential(
|
||||||
|
nn.Linear(28*28, 512),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(512, 512),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(512,10)
|
||||||
|
)
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.flatten(x)
|
||||||
|
logits = self.linear_relu_stack(x)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
model = NeuralNetwork()
|
||||||
|
model.load_state_dict(torch.load("FashionLabeling_model.pth"))
|
||||||
|
|
||||||
|
classes = [
|
||||||
|
"T-shirt/top",
|
||||||
|
"Trouser",
|
||||||
|
"Pullover",
|
||||||
|
"Dress",
|
||||||
|
"Coat",
|
||||||
|
"Sandal",
|
||||||
|
"Shirt",
|
||||||
|
"Sneaker",
|
||||||
|
"Bag",
|
||||||
|
"Ankle boot"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
# pick a random datapoint and test the model with it.
|
||||||
|
data = random.choice(test_data)
|
||||||
|
x, y = data[0] , data[1]
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
pred = model(x)
|
||||||
|
predicted, actual = classes[pred[0].argmax(0)], classes[y]
|
||||||
|
print(f'Predicted: "{predicted}", Actual: "{actual}"')
|
||||||
|
|
105
quickStart/TrainFashionLabeler.py
Normal file
105
quickStart/TrainFashionLabeler.py
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torchvision import datasets
|
||||||
|
from torchvision.transforms import ToTensor
|
||||||
|
|
||||||
|
# Download training data from open datasets
|
||||||
|
training_data = datasets.FashionMNIST(
|
||||||
|
root="data",
|
||||||
|
train=True,
|
||||||
|
download=True,
|
||||||
|
transform=ToTensor(),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Download test data from open datasets
|
||||||
|
test_data = datasets.FashionMNIST(
|
||||||
|
root="data",
|
||||||
|
train=False,
|
||||||
|
download=True,
|
||||||
|
transform=ToTensor(),
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_size = 64
|
||||||
|
|
||||||
|
# Create data loaders.
|
||||||
|
train_dataloader = DataLoader(training_data, batch_size=batch_size)
|
||||||
|
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
||||||
|
|
||||||
|
for X, y in test_dataloader:
|
||||||
|
print(f"Shape of X [N, C, H, W]: {X.shape}")
|
||||||
|
print(f"Shape of y: {y.shape} {y.dtype}")
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
# Get cpu or gpu device for training
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||||
|
|
||||||
|
print(f"Using {device} device")
|
||||||
|
|
||||||
|
# Define model
|
||||||
|
class NeuralNetwork(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.flatten = nn.Flatten()
|
||||||
|
self.linear_relu_stack = nn.Sequential(
|
||||||
|
nn.Linear(28*28, 512),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(512, 512),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(512,10)
|
||||||
|
)
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.flatten(x)
|
||||||
|
logits = self.linear_relu_stack(x)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
model = NeuralNetwork().to(device=device)
|
||||||
|
print(model)
|
||||||
|
loss_fn = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
|
||||||
|
|
||||||
|
def train(dataloader, model, loss_fn, optimizer):
|
||||||
|
size = len(dataloader.dataset)
|
||||||
|
model.train()
|
||||||
|
for batch, (X, y) in enumerate(dataloader):
|
||||||
|
X, y = X.to(device), y.to(device)
|
||||||
|
|
||||||
|
# Compute prediction error
|
||||||
|
pred = model(X)
|
||||||
|
loss = loss_fn(pred, y)
|
||||||
|
|
||||||
|
# Backpropegation
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if batch % 100 == 0:
|
||||||
|
loss, current = loss.item(), (batch + 1) * len(X)
|
||||||
|
print(f"loss: {loss:>7f} [{current:>5d}|{size:>5d}]")
|
||||||
|
|
||||||
|
def test(dataloader, model, loss_fn):
|
||||||
|
size = len(dataloader.dataset)
|
||||||
|
num_batches = len(dataloader)
|
||||||
|
model.eval()
|
||||||
|
test_loss, correct = 0,0
|
||||||
|
with torch.no_grad():
|
||||||
|
for X, y in dataloader:
|
||||||
|
X, y = X.to(device), y.to(device)
|
||||||
|
pred = model(X)
|
||||||
|
test_loss += loss_fn(pred, y).item()
|
||||||
|
correct += (pred.argmax(1)== y).type(torch.float).sum().item()
|
||||||
|
test_loss /= num_batches
|
||||||
|
correct /= size
|
||||||
|
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f}\n")
|
||||||
|
|
||||||
|
epochs = 40
|
||||||
|
for t in range(epochs):
|
||||||
|
print(f"Epoch {t+1}\n-------------------------------")
|
||||||
|
train(train_dataloader, model, loss_fn=loss_fn, optimizer=optimizer)
|
||||||
|
test(test_dataloader, model, loss_fn=loss_fn)
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.save(model.state_dict(), "model.pth")
|
||||||
|
print("Saved PyTorch Model State to model.pth")
|
6
requirements.txt
Normal file
6
requirements.txt
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
--index-url https://download.pytorch.org/whl/cu117
|
||||||
|
torch
|
||||||
|
--index-url https://download.pytorch.org/whl/cu117
|
||||||
|
torchvision
|
||||||
|
--index-url https://download.pytorch.org/whl/cu117
|
||||||
|
torchaudio
|
6
working_install_test.py
Normal file
6
working_install_test.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
x = torch.rand(5,3)
|
||||||
|
print("Random Tensor data: ", x)
|
||||||
|
|
||||||
|
print("Cuda available: ", torch.cuda.is_available())
|
Loading…
Reference in New Issue
Block a user