1
0

QuickStart Model Tutorial Finished

Finished up first neural network tutorial with pytorch
This commit is contained in:
Nigel Barink 2023-03-28 20:58:08 +02:00
commit 872947e867
8 changed files with 224 additions and 0 deletions

1
.gitattributes vendored Normal file
View File

@ -0,0 +1 @@
*.pth filter=lfs diff=lfs merge=lfs -text

4
.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
data
venv
.vscode

BIN
FashionLabeling_model.pth (Stored with Git LFS) Normal file

Binary file not shown.

15
README.md Normal file
View File

@ -0,0 +1,15 @@
# Pytorch Tutorials
## Learning about pytorch
![Pytorch logo](https://cdn.icon-icons.com/icons2/2699/PNG/512/pytorch_logo_icon_169823.png)
![Neural network image](https://tikz.net/wp-content/uploads/2021/12/neural_networks-001.png)
### Resources
[https://pytorch.org/docs/stable/index.html](https://pytorch.org/docs/stable/index.html)
- **Following tutorials from:**
[pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html](https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html)

View File

@ -0,0 +1,84 @@
import torch
import random
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Download training data from open datasets
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
# Get cpu or gpu device for training
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512,10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork()
model.load_state_dict(torch.load("FashionLabeling_model.pth"))
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot"
]
model.eval()
# pick a random datapoint and test the model with it.
data = random.choice(test_data)
x, y = data[0] , data[1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')

View File

@ -0,0 +1,105 @@
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Download training data from open datasets
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
# Get cpu or gpu device for training
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512,10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device=device)
print(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropegation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}|{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0,0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1)== y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f}\n")
epochs = 40
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn=loss_fn, optimizer=optimizer)
test(test_dataloader, model, loss_fn=loss_fn)
print("Done!")
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")

6
requirements.txt Normal file
View File

@ -0,0 +1,6 @@
--index-url https://download.pytorch.org/whl/cu117
torch
--index-url https://download.pytorch.org/whl/cu117
torchvision
--index-url https://download.pytorch.org/whl/cu117
torchaudio

6
working_install_test.py Normal file
View File

@ -0,0 +1,6 @@
import torch
x = torch.rand(5,3)
print("Random Tensor data: ", x)
print("Cuda available: ", torch.cuda.is_available())