QuickStart Model Tutorial Finished
Finished up first neural network tutorial with pytorch
This commit is contained in:
commit
872947e867
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@ -0,0 +1 @@
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
data
|
||||
venv
|
||||
.vscode
|
||||
|
BIN
FashionLabeling_model.pth
(Stored with Git LFS)
Normal file
BIN
FashionLabeling_model.pth
(Stored with Git LFS)
Normal file
Binary file not shown.
15
README.md
Normal file
15
README.md
Normal file
@ -0,0 +1,15 @@
|
||||
# Pytorch Tutorials
|
||||
## Learning about pytorch
|
||||
|
||||
![Pytorch logo](https://cdn.icon-icons.com/icons2/2699/PNG/512/pytorch_logo_icon_169823.png)
|
||||
|
||||
![Neural network image](https://tikz.net/wp-content/uploads/2021/12/neural_networks-001.png)
|
||||
|
||||
|
||||
### Resources
|
||||
|
||||
[https://pytorch.org/docs/stable/index.html](https://pytorch.org/docs/stable/index.html)
|
||||
|
||||
- **Following tutorials from:**
|
||||
[pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html](https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html)
|
||||
|
84
quickStart/FashionLabeler.py
Normal file
84
quickStart/FashionLabeler.py
Normal file
@ -0,0 +1,84 @@
|
||||
import torch
|
||||
import random
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import datasets
|
||||
from torchvision.transforms import ToTensor
|
||||
|
||||
# Download training data from open datasets
|
||||
training_data = datasets.FashionMNIST(
|
||||
root="data",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=ToTensor(),
|
||||
)
|
||||
|
||||
# Download test data from open datasets
|
||||
test_data = datasets.FashionMNIST(
|
||||
root="data",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=ToTensor(),
|
||||
)
|
||||
|
||||
batch_size = 64
|
||||
|
||||
# Create data loaders.
|
||||
train_dataloader = DataLoader(training_data, batch_size=batch_size)
|
||||
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
||||
|
||||
for X, y in test_dataloader:
|
||||
print(f"Shape of X [N, C, H, W]: {X.shape}")
|
||||
print(f"Shape of y: {y.shape} {y.dtype}")
|
||||
break
|
||||
|
||||
|
||||
# Get cpu or gpu device for training
|
||||
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
|
||||
print(f"Using {device} device")
|
||||
|
||||
# Define model
|
||||
class NeuralNetwork(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.linear_relu_stack = nn.Sequential(
|
||||
nn.Linear(28*28, 512),
|
||||
nn.ReLU(),
|
||||
nn.Linear(512, 512),
|
||||
nn.ReLU(),
|
||||
nn.Linear(512,10)
|
||||
)
|
||||
def forward(self, x):
|
||||
x = self.flatten(x)
|
||||
logits = self.linear_relu_stack(x)
|
||||
return logits
|
||||
|
||||
model = NeuralNetwork()
|
||||
model.load_state_dict(torch.load("FashionLabeling_model.pth"))
|
||||
|
||||
classes = [
|
||||
"T-shirt/top",
|
||||
"Trouser",
|
||||
"Pullover",
|
||||
"Dress",
|
||||
"Coat",
|
||||
"Sandal",
|
||||
"Shirt",
|
||||
"Sneaker",
|
||||
"Bag",
|
||||
"Ankle boot"
|
||||
]
|
||||
|
||||
|
||||
model.eval()
|
||||
# pick a random datapoint and test the model with it.
|
||||
data = random.choice(test_data)
|
||||
x, y = data[0] , data[1]
|
||||
|
||||
with torch.no_grad():
|
||||
pred = model(x)
|
||||
predicted, actual = classes[pred[0].argmax(0)], classes[y]
|
||||
print(f'Predicted: "{predicted}", Actual: "{actual}"')
|
||||
|
105
quickStart/TrainFashionLabeler.py
Normal file
105
quickStart/TrainFashionLabeler.py
Normal file
@ -0,0 +1,105 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import datasets
|
||||
from torchvision.transforms import ToTensor
|
||||
|
||||
# Download training data from open datasets
|
||||
training_data = datasets.FashionMNIST(
|
||||
root="data",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=ToTensor(),
|
||||
)
|
||||
|
||||
# Download test data from open datasets
|
||||
test_data = datasets.FashionMNIST(
|
||||
root="data",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=ToTensor(),
|
||||
)
|
||||
|
||||
batch_size = 64
|
||||
|
||||
# Create data loaders.
|
||||
train_dataloader = DataLoader(training_data, batch_size=batch_size)
|
||||
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
||||
|
||||
for X, y in test_dataloader:
|
||||
print(f"Shape of X [N, C, H, W]: {X.shape}")
|
||||
print(f"Shape of y: {y.shape} {y.dtype}")
|
||||
break
|
||||
|
||||
|
||||
# Get cpu or gpu device for training
|
||||
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
|
||||
print(f"Using {device} device")
|
||||
|
||||
# Define model
|
||||
class NeuralNetwork(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.linear_relu_stack = nn.Sequential(
|
||||
nn.Linear(28*28, 512),
|
||||
nn.ReLU(),
|
||||
nn.Linear(512, 512),
|
||||
nn.ReLU(),
|
||||
nn.Linear(512,10)
|
||||
)
|
||||
def forward(self, x):
|
||||
x = self.flatten(x)
|
||||
logits = self.linear_relu_stack(x)
|
||||
return logits
|
||||
|
||||
model = NeuralNetwork().to(device=device)
|
||||
print(model)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
|
||||
|
||||
def train(dataloader, model, loss_fn, optimizer):
|
||||
size = len(dataloader.dataset)
|
||||
model.train()
|
||||
for batch, (X, y) in enumerate(dataloader):
|
||||
X, y = X.to(device), y.to(device)
|
||||
|
||||
# Compute prediction error
|
||||
pred = model(X)
|
||||
loss = loss_fn(pred, y)
|
||||
|
||||
# Backpropegation
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if batch % 100 == 0:
|
||||
loss, current = loss.item(), (batch + 1) * len(X)
|
||||
print(f"loss: {loss:>7f} [{current:>5d}|{size:>5d}]")
|
||||
|
||||
def test(dataloader, model, loss_fn):
|
||||
size = len(dataloader.dataset)
|
||||
num_batches = len(dataloader)
|
||||
model.eval()
|
||||
test_loss, correct = 0,0
|
||||
with torch.no_grad():
|
||||
for X, y in dataloader:
|
||||
X, y = X.to(device), y.to(device)
|
||||
pred = model(X)
|
||||
test_loss += loss_fn(pred, y).item()
|
||||
correct += (pred.argmax(1)== y).type(torch.float).sum().item()
|
||||
test_loss /= num_batches
|
||||
correct /= size
|
||||
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f}\n")
|
||||
|
||||
epochs = 40
|
||||
for t in range(epochs):
|
||||
print(f"Epoch {t+1}\n-------------------------------")
|
||||
train(train_dataloader, model, loss_fn=loss_fn, optimizer=optimizer)
|
||||
test(test_dataloader, model, loss_fn=loss_fn)
|
||||
print("Done!")
|
||||
|
||||
|
||||
torch.save(model.state_dict(), "model.pth")
|
||||
print("Saved PyTorch Model State to model.pth")
|
6
requirements.txt
Normal file
6
requirements.txt
Normal file
@ -0,0 +1,6 @@
|
||||
--index-url https://download.pytorch.org/whl/cu117
|
||||
torch
|
||||
--index-url https://download.pytorch.org/whl/cu117
|
||||
torchvision
|
||||
--index-url https://download.pytorch.org/whl/cu117
|
||||
torchaudio
|
6
working_install_test.py
Normal file
6
working_install_test.py
Normal file
@ -0,0 +1,6 @@
|
||||
import torch
|
||||
|
||||
x = torch.rand(5,3)
|
||||
print("Random Tensor data: ", x)
|
||||
|
||||
print("Cuda available: ", torch.cuda.is_available())
|
Loading…
Reference in New Issue
Block a user