LearnOpenGL/Shaders/pbr.fs
2023-06-02 20:07:32 +02:00

140 lines
3.6 KiB
GLSL

#version 460 core
out vec4 FragColor;
in vec2 TexCoords;
in vec3 WorldPos;
in vec3 Normal;
uniform vec3 camPos;
uniform sampler2D albedoMap;
uniform sampler2D metallicMap;
uniform sampler2D normalMap;
uniform sampler2D roughnessMap;
uniform sampler2D aoMap;
uniform samplerCube irradianceMap;
uniform vec3 lightPositions[4];
uniform vec3 lightColors[4];
const float PI = 3.14159265359;
// ratio Refraction vs Reflection (F function)
vec3 fresnelSchlick (float cosTheta, vec3 F0, float roughness)
{
return F0 + (max(vec3(1.0- roughness), F0)- F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
}
// Calculate Normal distribution (D function)
float DistributionGGX(vec3 N , vec3 H, float roughness){
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH * NdotH;
float num = a2;
float denom = (NdotH2 * ( a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return num / denom;
}
// G function
float GeometrySchlickGGX(float NdotV, float roughness){
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float num = NdotV;
float denom = NdotV * (1.0 - k) + k;
return num / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N,L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
vec3 getNormalFromNormalMap(){
vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;
vec3 Q1 = dFdx(WorldPos);
vec3 Q2 = dFdy(WorldPos);
vec2 st1 = dFdx(TexCoords);
vec2 st2 = dFdy(TexCoords);
vec3 N = normalize(Normal);
vec3 T = normalize(Q1 *st2.t - Q2*st1.t);
vec3 B = -normalize(cross(N, T));
mat3 TBN = mat3(T, B, N);
return normalize(TBN * tangentNormal);
}
void main(){
vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
float metallic = texture(metallicMap, TexCoords).r;
float roughness = texture(roughnessMap, TexCoords).r;
float ao = texture(aoMap, TexCoords).r;
vec3 N = getNormalFromNormalMap();
vec3 V = normalize(camPos - WorldPos);
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo, metallic);
// Calculate the light contributions of each light source
vec3 Lo = vec3(0.0);
for( int i = 0; i < 4; ++i)
{
vec3 L = normalize(lightPositions[i] - WorldPos);
vec3 H = normalize(V + L);
float distance = length(lightPositions[i] - WorldPos);
float attenuation = 1.0/ (distance*distance);
vec3 radiance = lightColors[i] * attenuation;
float NDF = DistributionGGX(N,H, roughness);
float G = GeometrySmith(N,V,L, roughness);
vec3 F = fresnelSchlick(max(dot(H,V), 0.0), F0, roughness);
vec3 kS = F;
vec3 kD = vec3(1.0) - kS;
kD *= 1.0 - metallic;
vec3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N,V), 0.0) * max(dot(N, L), 0.0) + 0.0001;
vec3 specular = numerator /denominator;
float NdotL = max(dot(N,L), 0.0);
Lo += (kD * albedo / PI + specular) * radiance * NdotL;
}
// Calculate the ambient term and add it
vec3 kS = fresnelSchlick(max(dot(N,V), 0.0), F0, roughness);
vec3 kD = 1.0 - kS;
kD *= 1.0 - metallic;
vec3 irradiance = texture(irradianceMap, N).rgb;
vec3 diffuse = irradiance* albedo;
vec3 ambient = (kD * diffuse) * ao;
vec3 color = ambient + Lo;
// HDR tonemapping
color = color / (color + vec3(1.0));
// gamma correct
color = pow(color, vec3(1.0/2.2));
FragColor = vec4(color, 1.0);
}