#version 460 core out vec4 FragColor; in vec2 TexCoords; in vec3 WorldPos; in vec3 Normal; uniform vec3 camPos; uniform sampler2D albedoMap; uniform sampler2D metallicMap; uniform sampler2D normalMap; uniform sampler2D roughnessMap; uniform sampler2D aoMap; uniform samplerCube irradianceMap; uniform vec3 lightPositions[4]; uniform vec3 lightColors[4]; const float PI = 3.14159265359; // ratio Refraction vs Reflection (F function) vec3 fresnelSchlick (float cosTheta, vec3 F0, float roughness) { return F0 + (max(vec3(1.0- roughness), F0)- F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0); } // Calculate Normal distribution (D function) float DistributionGGX(vec3 N , vec3 H, float roughness){ float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH * NdotH; float num = a2; float denom = (NdotH2 * ( a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / denom; } // G function float GeometrySchlickGGX(float NdotV, float roughness){ float r = (roughness + 1.0); float k = (r*r) / 8.0; float num = NdotV; float denom = NdotV * (1.0 - k) + k; return num / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N,L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } vec3 getNormalFromNormalMap(){ vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0; vec3 Q1 = dFdx(WorldPos); vec3 Q2 = dFdy(WorldPos); vec2 st1 = dFdx(TexCoords); vec2 st2 = dFdy(TexCoords); vec3 N = normalize(Normal); vec3 T = normalize(Q1 *st2.t - Q2*st1.t); vec3 B = -normalize(cross(N, T)); mat3 TBN = mat3(T, B, N); return normalize(TBN * tangentNormal); } void main(){ vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2)); float metallic = texture(metallicMap, TexCoords).r; float roughness = texture(roughnessMap, TexCoords).r; float ao = texture(aoMap, TexCoords).r; vec3 N = getNormalFromNormalMap(); vec3 V = normalize(camPos - WorldPos); vec3 F0 = vec3(0.04); F0 = mix(F0, albedo, metallic); // Calculate the light contributions of each light source vec3 Lo = vec3(0.0); for( int i = 0; i < 4; ++i) { vec3 L = normalize(lightPositions[i] - WorldPos); vec3 H = normalize(V + L); float distance = length(lightPositions[i] - WorldPos); float attenuation = 1.0/ (distance*distance); vec3 radiance = lightColors[i] * attenuation; float NDF = DistributionGGX(N,H, roughness); float G = GeometrySmith(N,V,L, roughness); vec3 F = fresnelSchlick(max(dot(H,V), 0.0), F0, roughness); vec3 kS = F; vec3 kD = vec3(1.0) - kS; kD *= 1.0 - metallic; vec3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N,V), 0.0) * max(dot(N, L), 0.0) + 0.0001; vec3 specular = numerator /denominator; float NdotL = max(dot(N,L), 0.0); Lo += (kD * albedo / PI + specular) * radiance * NdotL; } // Calculate the ambient term and add it vec3 kS = fresnelSchlick(max(dot(N,V), 0.0), F0, roughness); vec3 kD = 1.0 - kS; kD *= 1.0 - metallic; vec3 irradiance = texture(irradianceMap, N).rgb; vec3 diffuse = irradiance* albedo; vec3 ambient = (kD * diffuse) * ao; vec3 color = ambient + Lo; // HDR tonemapping color = color / (color + vec3(1.0)); // gamma correct color = pow(color, vec3(1.0/2.2)); FragColor = vec4(color, 1.0); }