85 lines
1.9 KiB
Python
85 lines
1.9 KiB
Python
import torch
|
|
import random
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
from torchvision import datasets
|
|
from torchvision.transforms import ToTensor
|
|
|
|
# Download training data from open datasets
|
|
training_data = datasets.FashionMNIST(
|
|
root="data",
|
|
train=True,
|
|
download=True,
|
|
transform=ToTensor(),
|
|
)
|
|
|
|
# Download test data from open datasets
|
|
test_data = datasets.FashionMNIST(
|
|
root="data",
|
|
train=False,
|
|
download=True,
|
|
transform=ToTensor(),
|
|
)
|
|
|
|
batch_size = 64
|
|
|
|
# Create data loaders.
|
|
train_dataloader = DataLoader(training_data, batch_size=batch_size)
|
|
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
|
|
|
for X, y in test_dataloader:
|
|
print(f"Shape of X [N, C, H, W]: {X.shape}")
|
|
print(f"Shape of y: {y.shape} {y.dtype}")
|
|
break
|
|
|
|
|
|
# Get cpu or gpu device for training
|
|
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
|
|
print(f"Using {device} device")
|
|
|
|
# Define model
|
|
class NeuralNetwork(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.flatten = nn.Flatten()
|
|
self.linear_relu_stack = nn.Sequential(
|
|
nn.Linear(28*28, 512),
|
|
nn.ReLU(),
|
|
nn.Linear(512, 512),
|
|
nn.ReLU(),
|
|
nn.Linear(512,10)
|
|
)
|
|
def forward(self, x):
|
|
x = self.flatten(x)
|
|
logits = self.linear_relu_stack(x)
|
|
return logits
|
|
|
|
model = NeuralNetwork()
|
|
model.load_state_dict(torch.load("mdoels/FashionLabeling_model.pth"))
|
|
|
|
classes = [
|
|
"T-shirt/top",
|
|
"Trouser",
|
|
"Pullover",
|
|
"Dress",
|
|
"Coat",
|
|
"Sandal",
|
|
"Shirt",
|
|
"Sneaker",
|
|
"Bag",
|
|
"Ankle boot"
|
|
]
|
|
|
|
|
|
model.eval()
|
|
# pick a random datapoint and test the model with it.
|
|
data = random.choice(test_data)
|
|
x, y = data[0] , data[1]
|
|
|
|
with torch.no_grad():
|
|
pred = model(x)
|
|
predicted, actual = classes[pred[0].argmax(0)], classes[y]
|
|
print(f'Predicted: "{predicted}", Actual: "{actual}"')
|
|
|