BarinkOS/src/kernel/kernel.cpp
Nigel 2e59e6593e Add proper Physical memory management to this branch
to ensure it doesn't get too out of date

We can now run the FAT command to demo reading out the FAT16 filesystem,
however this will cause the need for a reboot as after this command. We are FOR NOW
not able to put in any new commands
2022-03-12 16:56:50 +01:00

292 lines
8.7 KiB
C++

#include "kernel.h"
#define GB4 524288
#define GB2 262144
extern "C" void wait_until_shutdown(){
while (true){
//Read time indefinetely
read_rtc();
printf( "UTC time: %02d-%02d-%02d %02d:%02d:%02d [ Formatted as YY-MM-DD h:mm:ss]\r" ,year, month, day, hour, minute, second);
delay(1000);
}
}
extern "C" void kernel_main (void) {
printf("call to init serial\n");
init_serial();
print_serial("Serial port initialized!");
RSDPTR* rsd = FindRSD();
RSDT* rsd_table = getRSDT(rsd);
// Enumerate the PCI bus
PCI_Enumerate();
TestIDEController();
int devNumber = 0 ;
for ( auto device : ide_devices){
if (!device.Reserved)
continue;
printf("Device %d\n" , devNumber);
printf (" Device on Channel: (0x%x) %s\n" ,device.Channel, device.Channel == 0 ? "Primary" : "Secondary");
printf (" Device drive:(0x%x) %s\n" , device.Drive, device.Drive? "Slave" : "Master");
printf (" Device Type:(0x%x) %s\n" , device.Type, device.Type ? "ATAPI" : "ATA");
devNumber ++;
}
enum BUS_PORT {
Primary= 0x1f0,
Secondary = 0x170
};
ATA_DEVICE::Identify((uint16_t) BUS_PORT::Primary, DEVICE_DRIVE::MASTER);
const int C = 0;
const int H = 0;
const int HPC = 16;
const int SPT = 63;
int S = 1;
uint32_t LBA = (C*HPC+H) * SPT + (S-1);
printf("LBA: %d\n" , LBA);
uint16_t buffer [256];
ATA_DEVICE::Read(BUS_PORT::Primary, DEVICE_DRIVE::MASTER, LBA, buffer);
MBR* mbr = (MBR*) buffer;
printf("BootSector: 0x%x\n", mbr->ValidBootsector );
for( int i = 0 ; i < 4 ; i ++){
PartitionTableEntry PT = mbr->TableEntries[i];
printf("Partition %d [ %d sectors, PartitionType: %x, 0x%x, \nLBA Start: 0x%x ]\n" ,
i, PT.Number_sectors_inPartition, PT.PartitionType, mbr->uniqueID, PT.LBA_partition_start );
}
// Find the BiosParameter block
uint16_t biosparameterblock[256];
ATA_DEVICE::Read(BUS_PORT::Primary, DEVICE_DRIVE::MASTER, mbr->TableEntries[0].LBA_partition_start, biosparameterblock);
BiosParameterBlock* bpb = (BiosParameterBlock*) biosparameterblock;
printf("\nBPB: Bytes per Sector %d\n", bpb->BytesPerSector );
printf("OEM ID: %s\n", bpb->OEM_id);
printf("Bytes per sector: %d\n", bpb->BytesPerSector);
printf("Sectors per cluster: %d\n", bpb->SectorsPerCluster);
printf("Reserved sectors: %d\n", bpb->ReservedSectors);
printf("Number of FAT: %d\n", bpb->NumberOfFileAllocationTables);
printf("Number of Dir entries: %d\n", bpb->NumberOfDirectoryEntries);
printf("Total Sectors in volume: %d\n", bpb->TotalSectorsInLogicalVolume);
printf("Sectors per FAT: %d\n", bpb->NumberOfSectorsPerFAT);
/**
* @brief File Allocation Table
*/
uint32_t FATAddress = mbr->TableEntries[0].LBA_partition_start + bpb->ReservedSectors ;
uint16_t FAT[256];
ATA_DEVICE::Read(BUS_PORT::Primary, DEVICE_DRIVE::MASTER, FATAddress, FAT );
// Show data in terminal
for(int i = 0; i < 256; i++ ) {
printf("%x ", FAT[i]);
}
kterm_put('\n');
uint32_t RootDirectoryRegion = FATAddress + ( bpb->NumberOfFileAllocationTables * bpb->NumberOfSectorsPerFAT );
uint32_t DataRegion = RootDirectoryRegion + ((bpb->NumberOfDirectoryEntries * 32) / bpb->BytesPerSector );
uint16_t data2 [256];
ATA_DEVICE::Read(BUS_PORT::Primary, DEVICE_DRIVE::MASTER, RootDirectoryRegion, data2 );
DirectoryEntry* RootDirectory = (DirectoryEntry*) data2;
// List files in root
for(int i= 0; i < bpb->NumberOfDirectoryEntries ; i++ )
{
DirectoryEntry* entry = (DirectoryEntry*)((uint32_t) RootDirectory + (i * sizeof(DirectoryEntry)));
if( entry->filename[0] == (uint8_t) 0x00 )
break; // There are no more entries in this directory or the entry is free
if( entry->attribute & 0x01 == 0x01 || entry->attribute & 0x20 == 0x20)
continue; // Skip listing if hidden or Achieve flag is set
// Print the filename;
for( int n = 0; n < 8; n++ ){
if(entry->filename[n] == 0x20)
break;
kterm_put(entry->filename[n]);
}kterm_put('\n');
for( int n = 0; n < 3; n++){
kterm_put(entry->Extension[n]);
}kterm_put('\n');
printf("Attribute: %x \n" , entry->attribute);
printf("FileSize: %d Bytes\n", entry->FilesizeInBytes);
if( entry->FilesizeInBytes != 0x0 || entry->attribute & 0x8 == 0x0){
printf("Show contents");
printf( "Start cluster of the file: 0x%x\n" , entry->StartingCluster);
printf("IS it only 1 cluster? %s\n" , FAT[i] == 0xFFFF? "Yes": "No" );
uint32_t sector = DataRegion + ((entry->StartingCluster - 0x02 ) * bpb->SectorsPerCluster);
uint16_t dataBlob [256];
ATA_DEVICE::Read(BUS_PORT::Primary, DEVICE_DRIVE::MASTER, sector, dataBlob );
for( int n = 0; n < 256; n++)
{
kterm_put(dataBlob[n] & 0x00ff);
kterm_put(dataBlob[n] >> 8);
}kterm_put('\n');
}
printf("======================\n");
}
wait_until_shutdown();
}
extern "C" void early_main(unsigned long magic, unsigned long addr){
/**
* Initialize terminal interface
* NOTE: This should be done later on , the magic value should be checked first.
*/
kterm_init();
/**
* Check Multiboot magic number
* NOTE: Printf call should not be a thing this early on ...
*/
if (magic != MULTIBOOT_BOOTLOADER_MAGIC){
printf("Invalid magic number: 0x%x\n", magic);
return;
}
/**
* Use the address given as an argument as the pointer
* to a Multiboot information structure.
*/
multiboot_info_t* mbt = (multiboot_info_t*) addr;
/**
* Construct our own bootInfo structure
*/
BootInfo bootinfo = {};
/*
If we got a memory map from our bootloader we
should be parsing it to find out the memory regions available.
*/
if (CHECK_FLAG(mbt->flags, 6))
{
/*
Setup Physical memory managment
*/
MemoryInfo meminfo = {};
bootinfo.memory = &meminfo;
mapMultibootMemoryMap(bootinfo.memory , mbt);
printf("Memory size: 0x%x bytes\n", bootinfo.memory->TotalMemory );
PhysicalMemory memAlloc = PhysicalMemory{};
memAlloc.setup(bootinfo.memory );
/*
Mark already in use sections
*/
// Mark kernel memory as used
printf("Kernel Begin Pointer: 0x%x, Kernel end pointer: 0x%x\n", kernel_begin , kernel_end );
multiboot_memory_map_t *mmap = (multiboot_memory_map_t*) mbt->mmap_addr;
for (; (unsigned long) mmap < mbt->mmap_addr + mbt->mmap_length; mmap = (multiboot_memory_map_t *) ((unsigned long) mmap + mmap->size + sizeof(mmap->size))){
if ( mmap->type == MULTIBOOT_MEMORY_AVAILABLE){
} else{
printf("allocate region: 0x%x, size : 0x%x bytes\n", (unsigned) mmap->addr,(unsigned) mmap->len );
memAlloc.allocate_region((unsigned)mmap->addr , (unsigned)mmap->len);
}
}
printf("allocate region: 0x%x, size : 0x%x bytes\n", kernel_begin, kernel_end - kernel_begin );
memAlloc.allocate_region(kernel_end, kernel_end - kernel_begin);
// test alloc_block
uint8_t* memory = (uint8_t*) memAlloc.allocate_block();
printf("Got a new pointer: 0x%x\n", memory);
uint8_t* memory2 = (uint8_t*) memAlloc.allocate_block();
printf("Got a new pointer: 0x%x\n", memory2);
memAlloc.free_block((void*) memory);
uint8_t* newBlockPlse = (uint8_t*) memAlloc.allocate_block();
// memAlloc.free_block((void*) memory);
}
initGDT();
init_idt();
// Enable interrupts
asm volatile("STI");
init_serial();
pit_initialise();
CheckMBT( (multiboot_info_t *) addr);
startSuperVisorTerminal(&bootinfo);
kernel_main();
}