Merge into main the new state of the operating system/kernel #1
@ -2,7 +2,6 @@
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
|
||||
inline void bitmap_set( uint32_t* map , int index )
|
||||
{
|
||||
map[index/32] |= (1 << (index % 32));
|
||||
@ -24,7 +23,6 @@ inline uint32_t bitmap_first_unset( uint32_t* map , int map_size)
|
||||
for(int j = 0 ; j < 32 ; j++){
|
||||
if ( (map[i] & (0x00000001 << j)) > 0)
|
||||
{
|
||||
printf("Found bit: byte 0x%x , bit 0x%x\n", i , j);
|
||||
return (i*32)+j;
|
||||
}
|
||||
}
|
||||
|
@ -27,17 +27,10 @@ multiboot_page_table:
|
||||
|
||||
# Entry point
|
||||
.section .multiboot.text, "a"
|
||||
.global _start
|
||||
.globl _start
|
||||
.type _start, @function
|
||||
_start:
|
||||
|
||||
/* push the pointer to the Multiboot information structure*/
|
||||
pushl %ebx
|
||||
|
||||
/* push the magic value */
|
||||
pushl %eax
|
||||
call prekernelSetup
|
||||
|
||||
# Get physical address of the boot_page_table
|
||||
movl $(boot_page_table - 0xC0000000), %edi
|
||||
# Map address 0
|
||||
@ -82,8 +75,15 @@ _start:
|
||||
4:
|
||||
# At this point, paging is fully set up and enabled
|
||||
isPaging:
|
||||
/* push the pointer to the Multiboot information structure*/
|
||||
pushl %ebx
|
||||
|
||||
/* push the magic value */
|
||||
pushl %eax
|
||||
call prekernelSetup
|
||||
|
||||
# Unmap the identity mapping as it is now unnecessary
|
||||
//movl $0, boot_page_directory + 0
|
||||
movl $0, boot_page_directory + 0
|
||||
|
||||
# Reload cr3 to force tlb flush
|
||||
movl %cr3, %ecx
|
||||
@ -97,6 +97,7 @@ isPaging:
|
||||
pushl $0
|
||||
popf
|
||||
|
||||
|
||||
call early_main
|
||||
|
||||
cli
|
||||
|
@ -39,13 +39,17 @@ extern "C" void early_main()
|
||||
{
|
||||
init_serial();
|
||||
print_serial("Hello Higher half kernel!\n");
|
||||
|
||||
kterm_init();
|
||||
|
||||
printf("Allocated blocks: %d \n", GetUsedBlocks());
|
||||
|
||||
initGDT();
|
||||
init_idt();
|
||||
|
||||
// Enable interrupts
|
||||
asm volatile("STI");
|
||||
|
||||
ProcessBootInfo();
|
||||
|
||||
initHeap();
|
||||
|
||||
@ -75,33 +79,4 @@ extern "C" void early_main()
|
||||
|
||||
kernel_main();
|
||||
|
||||
}
|
||||
|
||||
void ProcessBootInfo(){
|
||||
uint32_t BootInfoStruct = BootInfoBlock_pptr + 0xC0000000;
|
||||
BootInfoBlock* BootInfo = (BootInfoBlock*) ( BootInfoBlock_pptr + 0xC0000000 );
|
||||
|
||||
if( BootInfo->ValidELFHeader )
|
||||
{
|
||||
// NOTE: Do something with it.. (Store it , process it etc...)
|
||||
}
|
||||
|
||||
if(BootInfo->EnabledVBE)
|
||||
{
|
||||
// NOTE: Do something with it.. (Store it , process it etc...)
|
||||
}
|
||||
|
||||
if(BootInfo->ValidSymbolTable)
|
||||
{
|
||||
// NOTE: Do something with it.. (Store it , process it etc...)
|
||||
// printf("- Valid Symbol Table available at 0x%x.\n Tab Size: %d, str Size: %d\n", BootInfo->SymbolTableAddr, BootInfo->SymbolTabSize, BootInfo->SymbolStrSize);
|
||||
}
|
||||
|
||||
if(BootInfo->PhysicalMemoryMapAvailable)
|
||||
{
|
||||
|
||||
|
||||
SetupPhysicalMemoryManager(BootInfo);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -8,20 +8,16 @@ SECTIONS
|
||||
|
||||
_kernel_start = .;
|
||||
kernel_begin = .; /* For legacy reasons */
|
||||
|
||||
|
||||
|
||||
.multiboot.data : {
|
||||
*(.multiboot.data)
|
||||
}
|
||||
|
||||
.multiboot.text : {
|
||||
*(multiboot.text)
|
||||
*prekernel.o(.text)
|
||||
}
|
||||
|
||||
. += 0xC0000000; /* Addresses in the following code need to be above the 3Gb mark */
|
||||
|
||||
|
||||
.text ALIGN (4K) : AT (ADDR (.text) - 0xC0000000)
|
||||
{
|
||||
*(.text)
|
||||
|
@ -1,66 +1,46 @@
|
||||
#include "./PhysicalMemoryManager.h"
|
||||
#define BLOCK_SIZE 4092
|
||||
#define IS_ALIGNED(addr, align) !((addr) & ~((align) - 1))
|
||||
#define ALIGN(addr, align) (((addr) & ~((align) - 1 )) + (align))
|
||||
|
||||
const uint32_t KERNEL_OFFSET = 0xC0000000;
|
||||
extern uint32_t* boot_page_directory;
|
||||
extern uint32_t* boot_page_table;
|
||||
extern uint32_t* multiboot_page_table;
|
||||
|
||||
PhysicalMemoryManagerInfoBlock* PMMInfoBlock;
|
||||
uint32_t* memoryBitMap;
|
||||
uint32_t pmmap_size;
|
||||
uint32_t max_blocks;
|
||||
int used_blocks;
|
||||
|
||||
void SetupPhysicalMemoryManager( BootInfoBlock* Bootinfo)
|
||||
|
||||
void SetupPhysicalMemoryManager(uint32_t mapAddress, uint32_t memorySize )
|
||||
{
|
||||
|
||||
// NOTE: We should move our bitmap to just after the end of our kernel instead
|
||||
PMMInfoBlock = (PhysicalMemoryManagerInfoBlock*) ( ((uint32_t)MemoryMapHeap_pptr + 80 ) + KERNEL_OFFSET );
|
||||
/*
|
||||
/*
|
||||
Every byte contains 8 pages
|
||||
A page is 4096 kib
|
||||
Every block (1 bit) represent an page
|
||||
*/
|
||||
|
||||
// Calculate the maximum number of blocks
|
||||
int maximum_blocks = (uint32_t)Bootinfo->MemorySize / BLOCK_SIZE / 8;
|
||||
PMMInfoBlock->max_blocks = maximum_blocks;
|
||||
PMMInfoBlock->used_blocks = 0;
|
||||
// Set the maximum number of blocks
|
||||
max_blocks = (uint32_t)memorySize / BLOCK_SIZE ;
|
||||
printf("Max Blocks: %d\n", max_blocks);
|
||||
|
||||
// put the map after the gdt
|
||||
PMMInfoBlock->memoryBitMap = (uint32_t*) ( 0xC010b100) ;
|
||||
// Set size of the bitmap
|
||||
uint32_t bitmap_size = max_blocks / 32;
|
||||
printf("Bitmap size: %d bytes\n",bitmap_size);
|
||||
|
||||
// Set blocks used to zero
|
||||
used_blocks = 0;
|
||||
|
||||
//Size of memory map
|
||||
uint32_t memMap_size = PMMInfoBlock->max_blocks / 8;
|
||||
// set the address of the memory bitmap
|
||||
memoryBitMap = (uint32_t*) mapAddress;
|
||||
|
||||
// Set all places in memory as free
|
||||
memset(PMMInfoBlock->memoryBitMap, 0xFF, memMap_size );
|
||||
MemoryInfoBlock* currentBlock = (MemoryInfoBlock*) ((uint32_t)Bootinfo->MemoryMap + 0xC0000000) ;
|
||||
|
||||
printf( "Starting address: 0x%x\n", currentBlock);
|
||||
while( (uint32_t)currentBlock->next != 0x0 )
|
||||
{
|
||||
|
||||
if(IS_AVAILABLE_MEM(currentBlock->type)){
|
||||
printf("skip!\n");
|
||||
}
|
||||
else{
|
||||
printf("allocate region 0x%x of size %d bytes\n", currentBlock->Base_addr, currentBlock->Memory_Size);
|
||||
// allocate_region( currentBlock->Base_addr, currentBlock->Memory_Size); // allocate region causes #PF Exception
|
||||
}
|
||||
|
||||
currentBlock = (MemoryInfoBlock*) ((uint32_t)currentBlock->next + 0xC0000000 );
|
||||
|
||||
}
|
||||
|
||||
uint32_t kernel_size = ((uint32_t)&kernel_end - (uint32_t)&kernel_begin ) - KERNEL_OFFSET;
|
||||
|
||||
printf("kernel size in memory: 0x%x\n", kernel_size);
|
||||
allocate_region((uint32_t)&kernel_begin, kernel_size);
|
||||
|
||||
printf("allocate BIOS region\n");
|
||||
allocate_region (0x0000000, 0x00100000);
|
||||
memset(memoryBitMap, 0xFFFFFFFF, max_blocks / 32 );
|
||||
}
|
||||
|
||||
// NOTE: This can only give blocks of 4kb at a time!
|
||||
// We might at some point want to allocate multiple blocks at once.
|
||||
void* allocate_block() {
|
||||
uint8_t blocks_available = PMMInfoBlock->max_blocks - PMMInfoBlock->used_blocks;
|
||||
uint8_t blocks_available = max_blocks - used_blocks;
|
||||
// Are there any blocks available?
|
||||
if( blocks_available <= 0)
|
||||
{
|
||||
@ -69,7 +49,7 @@ void* allocate_block() {
|
||||
}
|
||||
|
||||
// Find 1 free block somewhere
|
||||
int free_block_index = bitmap_first_unset(PMMInfoBlock->memoryBitMap, PMMInfoBlock->max_blocks / 8 );
|
||||
int free_block_index = bitmap_first_unset(memoryBitMap, max_blocks / 8 );
|
||||
|
||||
if(free_block_index == -1)
|
||||
{
|
||||
@ -82,10 +62,10 @@ void* allocate_block() {
|
||||
printf("Somethings wrong!!!\n");
|
||||
|
||||
// Set the block to be used!
|
||||
bitmap_unset(PMMInfoBlock->memoryBitMap, free_block_index);
|
||||
bitmap_unset(memoryBitMap, free_block_index);
|
||||
// Increase the used_block count!
|
||||
PMMInfoBlock->used_blocks++;
|
||||
printf("used blocks: 0x%x\n", PMMInfoBlock->used_blocks);
|
||||
used_blocks++;
|
||||
printf("used blocks: 0x%x\n", used_blocks);
|
||||
// return the pointer to the physical address
|
||||
return (void*) (BLOCK_SIZE * free_block_index);
|
||||
}
|
||||
@ -99,9 +79,9 @@ void free_block(void* p) {
|
||||
int index = ((uint32_t) p) / BLOCK_SIZE;
|
||||
|
||||
// set the block to be free
|
||||
bitmap_set(PMMInfoBlock->memoryBitMap, index);
|
||||
PMMInfoBlock->used_blocks--;
|
||||
printf("used blocks: 0x%x, after free\n", PMMInfoBlock->used_blocks);
|
||||
bitmap_set(memoryBitMap, index);
|
||||
used_blocks--;
|
||||
printf("used blocks: 0x%x, after free\n", used_blocks);
|
||||
|
||||
}
|
||||
|
||||
@ -111,28 +91,26 @@ void allocate_region(uint32_t startAddress, uint32_t size) {
|
||||
|
||||
int NumberOfBlocksToAllocate = ( size / 1024) / 4 / 8 + 1;
|
||||
int startBlock = (startAddress / 1024) / 4 / 8 ;
|
||||
|
||||
|
||||
for( int i = 0; i < NumberOfBlocksToAllocate; i++)
|
||||
{
|
||||
bitmap_unset(PMMInfoBlock->memoryBitMap, startBlock+ i);
|
||||
PMMInfoBlock->used_blocks++;
|
||||
bitmap_unset(memoryBitMap, startBlock + i);// allocate region causes #PF Exception
|
||||
used_blocks++;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
void deallocate_region(uint32_t StartAddress , uint32_t size ) {
|
||||
// reverse of what happened in allocate_region
|
||||
|
||||
int NumberOfBlocks = (size / 1024) / 4 / 8 + 1;
|
||||
int startBlock = (StartAddress / 1024) / 4 / 8;
|
||||
|
||||
for(int i = 0; i < NumberOfBlocks; i++)
|
||||
{
|
||||
bitmap_set(PMMInfoBlock->memoryBitMap, startBlock + i);
|
||||
PMMInfoBlock->used_blocks --;
|
||||
bitmap_set(memoryBitMap, startBlock + i);
|
||||
used_blocks --;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int GetUsedBlocks (){
|
||||
return used_blocks;
|
||||
}
|
||||
|
@ -5,22 +5,14 @@
|
||||
#include "../lib/mem.h"
|
||||
#include "../bitmap.h"
|
||||
|
||||
// Asumming i386 for now!
|
||||
#define BLOCK_SIZE 4092
|
||||
|
||||
#define IS_ALIGNED(addr, align) !((addr) & ~((align) - 1))
|
||||
#define ALIGN(addr, align) (((addr) & ~((align) - 1 )) + (align))
|
||||
|
||||
struct PhysicalMemoryManagerInfoBlock
|
||||
{
|
||||
uint32_t* memoryBitMap;
|
||||
uint32_t pmmap_size;
|
||||
uint32_t max_blocks;
|
||||
int used_blocks;
|
||||
};
|
||||
void SetupPhysicalMemoryManager(uint32_t mapAddress, uint32_t memorySize);
|
||||
|
||||
void SetupPhysicalMemoryManager(BootInfoBlock* memory);
|
||||
void free_block(void* ptr);
|
||||
void* allocate_block();
|
||||
void allocate_region(uint32_t, uint32_t);
|
||||
void deallocate_region(uint32_t , uint32_t );
|
||||
void free_block(void* ptr);
|
||||
|
||||
void allocate_region(uint32_t address, uint32_t size);
|
||||
void deallocate_region(uint32_t address, uint32_t size);
|
||||
|
||||
int GetUsedBlocks();
|
@ -1,5 +1,5 @@
|
||||
#include "VirtualMemoryManager.h"
|
||||
|
||||
#define ALIGN(addr, align) (((addr) & ~((align) - 1 )) + (align))
|
||||
extern uint32_t boot_page_directory[1024] ;
|
||||
extern uint32_t boot_page_table[1024];
|
||||
|
||||
|
@ -39,8 +39,3 @@ struct BootInfoBlock {
|
||||
uint32_t MemorySize ;
|
||||
|
||||
};
|
||||
|
||||
|
||||
const uint32_t pke = ((uint32_t)&kernel_end) - 0xC0000000;
|
||||
const uint32_t BootInfoBlock_pptr = pke + 1000 - sizeof(BootInfoBlock);
|
||||
const uint32_t MemoryMapHeap_pptr = pke + 0x1;
|
||||
|
@ -1,119 +1,140 @@
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include "multiboot.h"
|
||||
#include "bootstructure.h"
|
||||
#include "../memory/PhysicalMemoryManager.h"
|
||||
|
||||
#define CHECK_FLAG(flags, bit) ((flags) & (1 <<(bit)))
|
||||
#define VADDR_TO_PADDR(vaddr) (vaddr - 0xC0000000)
|
||||
#define PADDR_TO_VADDR(paddr) (paddr + 0xC0000000)
|
||||
|
||||
|
||||
extern "C" void prekernelSetup ( unsigned long magic, multiboot_info_t* mbi) {
|
||||
|
||||
// Create the bootInfoBlock at its location
|
||||
BootInfoBlock* BIB = (BootInfoBlock*) BootInfoBlock_pptr;
|
||||
extern "C" void prekernelSetup ( unsigned long magic, multiboot_info_t* mbi)
|
||||
{
|
||||
|
||||
/*
|
||||
* Check Multiboot magic number
|
||||
*/
|
||||
if (magic != MULTIBOOT_BOOTLOADER_MAGIC)
|
||||
{
|
||||
BIB->MapIsInvalid = true;
|
||||
// crash
|
||||
return;
|
||||
} else{
|
||||
BIB->MapIsInvalid = false;
|
||||
}
|
||||
|
||||
/* is boot device valid ? */
|
||||
if (CHECK_FLAG (mbi->flags, 1))
|
||||
{
|
||||
BIB->bootDeviceID = mbi->boot_device;
|
||||
} else{
|
||||
BIB->bootDeviceID = 0x11111111;
|
||||
}
|
||||
|
||||
/* Are mods_* valid? */
|
||||
if(CHECK_FLAG ( mbi->flags, 3)){
|
||||
multiboot_module_t *mod;
|
||||
uint32_t i;
|
||||
|
||||
BIB->GrubModuleCount = mbi->mods_count;
|
||||
|
||||
|
||||
for(i = 0, mod = (multiboot_module_t *) mbi->mods_addr; i < mbi->mods_count; i++ , mod++){
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/* Is the symbol table of a.out valid? */
|
||||
if (CHECK_FLAG(mbi->flags, 4))
|
||||
{
|
||||
BIB->ValidSymbolTable = true;
|
||||
multiboot_aout_symbol_table_t *multiboot_aout_sym = &(mbi->u.aout_sym);
|
||||
|
||||
} else{
|
||||
BIB->ValidSymbolTable = false;
|
||||
}
|
||||
|
||||
/* Is the section header table of ELF valid? */
|
||||
if (CHECK_FLAG(mbi->flags, 5))
|
||||
{
|
||||
BIB->ValidELFHeader = true;
|
||||
multiboot_elf_section_header_table_t *multiboot_elf_sec = &(mbi->u.elf_sec);
|
||||
|
||||
}else{
|
||||
BIB->ValidELFHeader = false;
|
||||
}
|
||||
/*
|
||||
If we got a memory map from our bootloader we
|
||||
should be parsing it to find out the memory regions available.
|
||||
*/
|
||||
if (CHECK_FLAG(mbi->flags, 6))
|
||||
{
|
||||
BIB->PhysicalMemoryMapAvailable = true;
|
||||
BIB->MemoryMap = (MemoryInfoBlock*) MemoryMapHeap_pptr;
|
||||
multiboot_memory_map_t *mmap = (multiboot_memory_map_t*) (mbi->mmap_addr) ;
|
||||
auto MemoryMapEnd = mbi->mmap_addr + mbi->mmap_length;
|
||||
|
||||
auto CurrentInfoBlock = BIB->MemoryMap;
|
||||
|
||||
uint32_t RAM_size = 0;
|
||||
|
||||
while((unsigned long) mmap < MemoryMapEnd){
|
||||
BIB->map_size += sizeof(MemoryInfoBlock);
|
||||
CurrentInfoBlock->Base_addr = mmap->addr;
|
||||
CurrentInfoBlock->Memory_Size = mmap->len;
|
||||
|
||||
|
||||
if(mmap->type == MULTIBOOT_MEMORY_AVAILABLE)
|
||||
CurrentInfoBlock->type |= 0x1;
|
||||
RAM_size += mmap->len;
|
||||
if(mmap->type == MULTIBOOT_MEMORY_ACPI_RECLAIMABLE)
|
||||
CurrentInfoBlock->type |= 0x2;
|
||||
if(mmap->type == MULTIBOOT_MEMORY_RESERVED)
|
||||
CurrentInfoBlock->type |= 0x4;
|
||||
if(mmap->type == MULTIBOOT_MEMORY_NVS)
|
||||
CurrentInfoBlock->type |= 0x8;
|
||||
if(mmap->type == MULTIBOOT_MEMORY_BADRAM)
|
||||
CurrentInfoBlock->type |= 0x10;
|
||||
|
||||
|
||||
// continue to the next block
|
||||
mmap = (multiboot_memory_map_t *) ((unsigned long) mmap + mmap->size + sizeof(mmap->size));
|
||||
|
||||
CurrentInfoBlock->next = (MemoryInfoBlock*) CurrentInfoBlock + 16;
|
||||
CurrentInfoBlock = CurrentInfoBlock->next;
|
||||
/*
|
||||
* Check Multiboot magic number
|
||||
*/
|
||||
if (magic != MULTIBOOT_BOOTLOADER_MAGIC)
|
||||
{
|
||||
// PANIC!!
|
||||
return;
|
||||
}
|
||||
|
||||
CurrentInfoBlock->next = (MemoryInfoBlock*) 0x0;
|
||||
BIB->MemorySize = RAM_size;
|
||||
} else
|
||||
{
|
||||
BIB->PhysicalMemoryMapAvailable = false;
|
||||
}
|
||||
|
||||
/* Draw diagonal blue line */
|
||||
if (CHECK_FLAG (mbi->flags, 12)){
|
||||
BIB->EnabledVBE = true;
|
||||
} else{
|
||||
BIB->EnabledVBE;
|
||||
}
|
||||
mbi = PADDR_TO_VADDR(mbi);
|
||||
|
||||
|
||||
// Setup the physical memory manager immmediatly
|
||||
// Doing so saves the complications of doing it later when
|
||||
// paging is enabled
|
||||
|
||||
/*
|
||||
If we got a memory map from our bootloader we
|
||||
should be parsing it to find out the memory regions available.
|
||||
*/
|
||||
if (CHECK_FLAG(mbi->flags, 6))
|
||||
{
|
||||
|
||||
// Calculate total memory size
|
||||
uint32_t RAM_size = 0;
|
||||
for(
|
||||
multiboot_memory_map_t* mmap = (multiboot_memory_map_t*) mbi->mmap_addr;
|
||||
(unsigned long)mmap < mbi->mmap_addr + mbi->mmap_length;
|
||||
mmap += mmap->size +sizeof(mmap->size)
|
||||
){
|
||||
RAM_size += mmap->len;
|
||||
}
|
||||
|
||||
// Call SetupPhysicalMemoryManager at its physical address
|
||||
SetupPhysicalMemoryManager ( (uint32_t)VADDR_TO_PADDR(&kernel_end), RAM_size);
|
||||
|
||||
for(
|
||||
multiboot_memory_map_t* mmap = (multiboot_memory_map_t*) mbi->mmap_addr;
|
||||
(unsigned long)mmap < mbi->mmap_addr + mbi->mmap_length;
|
||||
mmap += mmap->size +sizeof(mmap->size)
|
||||
){
|
||||
|
||||
if(mmap->type == MULTIBOOT_MEMORY_AVAILABLE)
|
||||
deallocate_region(mmap->addr, mmap->len);
|
||||
if(mmap->type == MULTIBOOT_MEMORY_ACPI_RECLAIMABLE)
|
||||
allocate_region(mmap->addr, mmap->len);
|
||||
if(mmap->type == MULTIBOOT_MEMORY_RESERVED)
|
||||
allocate_region(mmap->addr, mmap->len);
|
||||
if(mmap->type == MULTIBOOT_MEMORY_NVS)
|
||||
allocate_region(mmap->addr, mmap->len);
|
||||
if(mmap->type == MULTIBOOT_MEMORY_BADRAM)
|
||||
allocate_region(mmap->addr, mmap->len);
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Allocate the kernel
|
||||
allocate_region( (uint32_t)&kernel_begin, ( (uint32_t)&kernel_end - (uint32_t)&kernel_begin)- 0xC0000000 );
|
||||
|
||||
// Allocate the memory region below 1MB
|
||||
allocate_region(0x0000000, 0x00100000);
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
// We didn't get a memory map from our bootloader.
|
||||
// PANIC!!!!
|
||||
return;
|
||||
}
|
||||
|
||||
// allocate a full block for the other boot info!
|
||||
BootInfoBlock* BIB = (BootInfoBlock*) allocate_block();
|
||||
|
||||
|
||||
/* is boot device valid ? */
|
||||
if (CHECK_FLAG (mbi->flags, 1))
|
||||
{
|
||||
BIB->bootDeviceID = mbi->boot_device;
|
||||
} else{
|
||||
BIB->bootDeviceID = 0x11111111;
|
||||
}
|
||||
|
||||
/* Are mods_* valid? */
|
||||
if(CHECK_FLAG ( mbi->flags, 3)){
|
||||
multiboot_module_t *mod;
|
||||
uint32_t i;
|
||||
|
||||
BIB->GrubModuleCount = mbi->mods_count;
|
||||
|
||||
|
||||
for(i = 0, mod = (multiboot_module_t *) mbi->mods_addr; i < mbi->mods_count; i++ , mod++){
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/* Is the symbol table of a.out valid? */
|
||||
if (CHECK_FLAG(mbi->flags, 4))
|
||||
{
|
||||
// NOTE: Do something with it.. (Store it , process it etc...)
|
||||
// printf("- Valid Symbol Table available at 0x%x.\n Tab Size: %d, str Size: %d\n", BootInfo->SymbolTableAddr, BootInfo->SymbolTabSize, BootInfo->SymbolStrSize);
|
||||
BIB->ValidSymbolTable = true;
|
||||
multiboot_aout_symbol_table_t *multiboot_aout_sym = &(mbi->u.aout_sym);
|
||||
|
||||
} else{
|
||||
BIB->ValidSymbolTable = false;
|
||||
}
|
||||
|
||||
/* Is the section header table of ELF valid? */
|
||||
if (CHECK_FLAG(mbi->flags, 5))
|
||||
{
|
||||
// NOTE: Do something with it.. (Store it , process it etc...)
|
||||
BIB->ValidELFHeader = true;
|
||||
multiboot_elf_section_header_table_t *multiboot_elf_sec = &(mbi->u.elf_sec);
|
||||
|
||||
}else{
|
||||
BIB->ValidELFHeader = false;
|
||||
}
|
||||
|
||||
/* Draw diagonal blue line */
|
||||
if (CHECK_FLAG (mbi->flags, 12)){
|
||||
BIB->EnabledVBE = true;
|
||||
|
||||
// NOTE: Do something with it.. (Store it , process it etc...)
|
||||
} else{
|
||||
BIB->EnabledVBE;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user